A study of the formation of magnetically active solid dispersions of phenacetin using atomic and magnetic force microscopy

نویسندگان

  • Liana Stanislavovna Usmanova
  • Marat Akhmedovich Ziganshin
  • Valery Vilenovich Gorbatchuk
  • Sufia Askhatovna Ziganshina
  • Dmitry Anatolevich Bizyaev
  • Anastas Akhmetovich Bukharaev
  • Timur Anvarovich Mukhametzyanov
  • Alexander Vladimirovich Gerasimov
چکیده

A lot of pharmaceutical substances have a poor solubility that limits their absorption and distribution to the targeted sites to elicit the desired action without causing untoward effects on healthy cells or tissues. For such drugs, new modes of delivery have to be developed for efficient and effective delivery of the drug to the target site. Formation of magnetically active solid dispersion of such drugs could be a useful approach to addressing this problem because they combine targeted delivery and good solubility. In this work, the distribution of superparamagnetic nanoparticles in the solid dispersion of polyethylene glycol with average molecular weight 950-1050 g/mol and phenacetin was studied using atomic force and magnetic force microscopy. The distribution of nanoparticles was found to be uniform in studied composites. Magnetically active solid dispersions may find application in the production of the capsulated drug delivery systems with enhanced solubility parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy

The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...

متن کامل

Magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes

Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...

متن کامل

Synthesis and Application of Novel Modified Magnetic Nanocomposite for Solid Phase Extraction of Thallium(I) Ions

In this paper, magnetically multiwalled carbon nanotubes (MMWCNTs) nanocomposite modified by methyl-2-[2-(2-2-[2-(methoxycarbonyl) phenoxy] ethoxyethoxy) ethoxy] benzoate was applied for magnetic solid-phase extraction (MSPE) of thallium(I) ions. Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrometry and vibrat...

متن کامل

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

اثر نسبت حجمی مذاب- جامد و سرعت دوران بر فصل مشترک جفت فلزی منیزیم- آلومینیم در ریخته‌گری گریز از مرکز

In this study, centrifugal casting process was used for producing Al/Mg bimetal. Molten Mg was poured at 700 oC, with 1.5 and 3 melt-to-solid volume ratio (Vm/Vs) into the 450 oC preheated solid Al rotating at 800, 1200, 1600 and 2000 rpm. Castings were kept inside the centrifuged casting machine and cooled down to 150 oC. Investigating the effect of melt-to-solid volume ratio showed that incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017